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Abstract

We investigate the couplings between different energy band valleys in a MOSFET device using

self-consistent calculations of million-atom Schrödinger-Poisson Equations. Atomistic empirical

pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band struc-

ture. The MOSFET device is under nonequilibrium condition with a source-drain bias up to 2V,

and a gate potential close to the threshold potential. We find that all the intervalley couplings are

small, with the coupling constants less than 3 meV. As a result, the system eigenstates derived

from different bulk valleys can be calculated separately. This will significantly reduce the simula-

tion time, because the diagonalization of the Hamiltonian matrix scales as the third power of the

total number of basis functions.
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I. INTRODUCTION

As the size of MOSFET (metal-oxide-semiconductor field-effect transistor) shrinks down

to nanometer scale [1], quantum mechanical effects become important in describing the

physical properties of such devices [2, 3]. In recent years, there have been many developments

[4–6] for new computational approaches to simulate the physics of such nanometer devices

beyond the traditional semiclassical Drift-Diffusion model. The most direct method is to

solve the coupled Schrodinger-Poisson equations. While the Schrodinger’s equation treats

quantum mechanical effects directly, the Poisson equation yields a self-consistent potential

based on the carrier charge density. There are different approximations to describe the

Schrodinger’s equation. These include the effective mass approximation (EMA) [7, 8], the

k ·p method [9] and the empirical tight-binding model [10]. While the EMA and k ·p model

are widely used, they have several fundamental flaws. One is the questionable validity of the

parabolic approximation of the band structure, another is the lack of intervalley coupling in

these models. In the conduction band of Si, there are three X valleys with the same energy.

Thus, it is quite possible that one needs to solve these valleys together to account for their

possible coupling. When the source drain bias potential in a MOSFET is about 1V, the L

valley energy at the drain side is similar to the X valley energy at the source side. Thus,

it is possible that a X valley electron from the source will coupled to (or tunnel into) the

L valley electron at the drain. In the simple effective mass treatment, there is no valley

coupling in the Hamiltonian. Different valleys have to be treated separately. To address the

importance of intervalley coupling, in this paper we present a MOSFET simulation based

on empirical pseudopotential method (EPM) and linear combination of bulk band (LCBB)

[11, 12] solutions of the Schrodinger’s equation. Our EPM Hamiltonian provides the whole

band structure with all band structure valleys, while the LCBB calculation allows solutions

of million atom systems. Fig.1 shows the Si band structure calculated using our EPM.

As can be seen, the L point is only 1.0 eV higher than X point. Thus, when the bias is

larger than 1.0 V, the X point bulk energy at the source side is similar to the L point bulk

energy at the drain side. Thus, an intervalley coupling might become important. One of the

advantages of the LCBB method is that it allows the selective inclusion of the physically

important bulk basis states. Therefore by selecting basis states from different valleys, the

valley coupling problem can be studied systematically [13]. We will study the Γ-X, L-X,
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X-X couplings, their magnitudes and their effects on the electronic structures of nanosize

MOSFETs.

II. MODEL AND CALCULATION

We will investigate a n type channel Si MOSFET with a channel (in the x direction)

length of 25 nm and SiO2 thickness of 1.5 nm. The geometry of the device is shown in

Fig.2(a), where the dashed line box is the actual calculation region, which has a length of

25nm in horizontal x direction, a width of 25nm in horizontal y direction, and a height of

27nm in vertical z direction. Doping density in the substrate(which is p type) is 1019cm−3,

and we assume a continuous uniform doping profile in the substrate.

In our approach, we solve self-consistently the coupled Schrödinger-Poisson Equations

constructed as

(−1

2
∇2 + Vb(r) + Vstr(r) + Vext(r))ψi(r) = Eiψi(r) (1)

∇[ε(r)∇φ(r)] = −4π[p(r) − n(r) +N+
d (r) −N−

a (r)] (2)

where Vb(r) =
∑

R
υ(|r-R|), υ(|r|) is a screened spherical atomic empirical pseudopotential

[11] fit to the bulk Si band structure and electron wavefunctions. R denotes the positions

of the atoms. Vstr(r) is a confinement potential representing the geometry of the device and

the band alignment between the bulk Si and SiO2 layer. Thus, for a given device geometry

Vstr(r) is fixed, independent of the gate voltage and source-drain bias. Vext(r) = eφ(r) is

the self-consistent electrostatic potential solved from Eq(2). ε(r) is the position-dependent

dielectric constant, 3.9 for SiO2 and 11.8 for Si. The densities of hole p(r) and ionized

donors (acceptors) N+
d (r) (N−

a (r)) are calculated by a semiclassical approximation [14] for a

given potential φ(r) at room temperature. n(r) is the occupied electron density. The LCBB

method [11] is used to solve the eigenstates {ψi(r), Ei} of Eq.(1) within the dashed line box

of Fig.2(a) containing 0.85 million atoms. The solved eigenstates ψi(r) are evaluated on a

104 × 46 × 100 numerical grid in real space, and the occupied n type carrier density n(r)

on this grid will be calculated (using formula given below) from {ψi(r), Ei}. Then Eqs. (1)

and (2) are solved self-consistently until convergence is reached using a Pulay DIIS (direct

inversion of iteration space) potential mixing iterative scheme [15]. The Poisson equation

[Eq.(2)] is solved in the region within the dashed line box of Fig.2(a). A fixed potential

boundary condition is used at the gate, source and drain areas, and surface parallel and
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normal electric field conditions are used at the two lower sides [blue region in Fig.2(a)] and

the bottom of the box, respectively.

Due to the applied source-drain voltage, as shown in Fig.2(a), we have different Fermi

levels: EL
F for the source region and ER

F for the drain region under nonequilibrium condition.

One approximate way to calculate the charge density n(r) is to use EL
F and ER

F to occupy

the wave function ψi(r) separately from the left and right hand sides, then use partition

functions to put the left and right hand sides together.This leads to the following formula:

n(r) = 2
∑

i

|ψi(r)|2
WL

i (r)fL(Ei) +WR
i (r)fR(Ei)

WL
i (r) +WR

i (r)
, (3)

where fL(R)(E) = F (E −E
L(R)
F ) (F is the Fermi-Dirac distribution function) represents the

left (L) and right (R) occupation functions, respectively, and W L
i (r) and WR

i (r) are the left

and right hand side partition functions for eigenstate ψi(r). The partition functions W
L(R)
i

along the x direction can be described by the WKB approximation on each (y,z) line as

WL
i (x, y, z) = exp[−2

∫ x

0
f ′(Ec(x, y, z) − Ei)dx] and WR

i (x, y, z) = exp[2
∫ x

Lc
f ′(Ec(x, y, z) −

Ei)dx]. Here f ′(u) =
√

2meu (for u > 0) and f ′(u) = 0 (for u ≤ 0), me is the effective mass

of the conduction band, and Ec(x, y, z) is the energy of bulk conduction band minimum at

point r = (x, y, z) under a given electrostatic potential φ(r). Further details of the simulation

can be found in Ref.5.

III. RESULTS AND DISCUSSIONS

In the LCBB method, the single-particle wave function ψi in Eq.(1) is expanded in terms

of Bloch states of the bulk Si:

ψi(r) =

Nb∑

n

Nk∑

k

Ci
n,kφn,k(r), (4)

where Nb, Nk are the numbers of the bulk bands and k points respectively. φn,k(r) =

1√
N
un,k(r)e

ik·r, un,k(r) is bulk Bloch state which is described by plane wave functions as

un,k(r) = 1√
V0

∑NG

G
Ak,n(G)eiG·x, NG is the number of zinc-blende reciprocal-lattice vectors

G within an energy cutoff.

Within the LCBB formalism, the Hamiltonian matrix elements can be written as:
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< φn′,k′ |Ĥ|φn,k >= Ω0

∑

G,G′

Ak
′,n′(G′)[

~

2m
|k + G|2δk,k′δG,G′ + Vstr−ext(k − k′)δG,G′

+V (|k + G − k′ − G′|2)e−id0·(k+G−k
′−G

′)W 0(k − k′)]Ak,n(G), (5)

where Ω0 is the supercell volume and υ(q2) is the Fourier transform of υ(|r|). d0 is the

displacement of atom inside the primary cell R, and W 0(k) is a structure factor W 0(k) =

1
Ω0

∑
R0
W (R0)e

ik·R0, where W (R0) indicates the atomic weight at the atomic site R0.

Vstr−ext(k) is the Fourier transform of Vstr(r) + Vext(r). The last two terms in the right

hand side of Eq.(5) describe the intervalley couplings. The amplitudes of these couplings

depend critically on the symmetry and atomic details of V(r) [11]. Obviously, the bulk

potential Vb will not introduce intervalley coupling. The coupling is introduced from both

Vstr and Vext. While the Vstr introduces coupling for ∆k = k′ − k in the z direction, Vext

introduces coupling for ∆k in both z and x directions. Additionally, Vext depends on the

gate voltage and source-drain bias. The calculation of Hamiltonian matrix elements of Eq(5)

is based on a fast algorithm, with the resulting matrix then directly diagonalized to yield

the coefficients C i
n,k of Eq.(4) and eigenenergies Ei of Eq.(1). Here we can separate Eq.(4)

into its components:

ψi(r) =

Nb∑

n

{
NkX∑

kX

Ci
n,kX

φn,kX
(r) +

NkΓ∑

kΓ

Ci
n,kΓ

φn,kΓ
(r)

+

NkL∑

kL

Ci
n,kL

φn,kL
(r)}. (6)

The k-point sum runs over the supercell reciprocal lattices kX , kΓ and kL within pockets

near X,Γ and L points, as shown in Fig.2(b).Nk = NkX
+NkΓ

+NkL
. We can define a special

k∗ point weight function, P i
k
∗ =

∑
k∈k∗

∑
n |Ci

n,k|2, for a given eigensate subject to

PX(Ei) + PΓ(Ei) + PL(Ei) = 1 (7)

due to wavefunction normalization. We can use these weights to characterize each eigenstate

and to analyze valley coupling within each eigenstate. For the Si-MOSFET studied here, in

equilibrium condition (i.e., zero drain-source bias: Vds = 0.0V ), the weights of wave functions

mainly come from the first term of Eq.(6) for all the eigenstates since the conduction-band

minimum (CBM) of the bulk Si is localized in the X-valley. In this case, all the Γ-X and
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L-X intervalley couplings effects are small. In the nonequilibrium conditions, when a large

source-drain bias potential exists, Γ-X and L-X intervalley couplings can play significant

roles since they can have similar energies from the different parts of the device. In the

following, we will study these situations.

To explore Γ-X coupling, we have chosen two conduction bands [Nb = 2 in Eq(4)] at each

k-point, and selected 1468 k-points at each of the three non-equivalent X-valleys (X001, X010,

X100) and 1213 k-points at the Γ-valley. This amounts to 5617 total k-points. To study the

L-X coupling, we have chosen 1468 k-points at each of the three non-equivalent X-valleys

(X001,X010, X100) and 587 k-points at each of the two L-valleys (L(111),L(11 − 1)). This

amounts to 5578 total k-points. The other two L points (L(1 − 11),L(1 − 1 − 1)) are not

included to reduce the size of the basis set. However, since they are physically equivalent

to L(111) and L(11 − 1), and we are only interested in L-X coupling, not L-L coupling,

this does not affect our conclusions. The resulting LCBB calculated valley weight functions

PΓ and PL for different eigenstates are shown in Fig.3 for Vds=2.0 and V g = 2.4V (slightly

larger than the threshold gate potential of 2.1V). The energies in the horizontal axis of

Figs.3-6 are measured from the vacuum level which is fixed in an EPM Hamiltonian. As

can be seen in Fig.3(a), PΓ is very small in the whole energy range, indicating that the

contributions of the Γ-valley to the electronic states are always very small. Fig.3(b) shows

that PL is almost zero for low energy states, but almost one for some higher energy states.

This indicates that the eigenstates consist either of pure X point bulk states, or of pure L

point bulk states. Thus, there is almost no L-X coupling. However, this does not mean

that we can completely ignore the L point contribution. For a strongly biased system, the

eigenstates from the L points can be occupied from the drain side. This is demonstrated by

the density of state (DOS) of the eigenstates derived purely from L-valley shown in Fig.4.

These DOS are calculated by including only the L valley basis set in Eq(6). As we can see,

as the Vds increases, the DOS shifts towards Fermi energy EL
F . When Vds=2.0V, there are

already some L-valley derived states which will be occupied. Nevertheless, since the L-X

coupling is small, these L-valley derived states can be calculated by using L-valley basis

functions alone. The mobile charge density we calculated from the contributions of L-valley

electron states is QL=1.2×10−22(µC/cm−2), which is not entirely negligible. Note that, the

two other L-valleys L(1 − 11),L(1 − 1 − 1), not included in Fig.4, are equivalent to the two

valleys used in Fig.4. So the total L-valley contribution is twice of what shown in Fig.4.
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The same state occupation does not happen for the Γ point derived states at Vds = 2.0V ,

since the Γ point has a much higher energy than the L point valley, as shown in Fig.1.

Due to the small X-L coupling, it is plausible that the total DOS (and the corresponding

charge density) can be represented as the sum of the DOS from different valleys. To confirm

this, Fig.5 compares the DOS calculated with different X and L valley basis set selections

with Vds = 2.0V and Vg = 2.4V . Blue and the cyan lines represent DOS with X-valley only

and L-valley only basis sets, respectively. As shown in Fig.4, a small part of the L-valley

DOS is below the Fermi energy EL
F , hence occupied. We can sum over DOSX and DOSL,

yielding X+L shown in Fig.5 as the red line. This is compared with the directly calculated

total DOS with basis set from both X and L valleys (XL, the solid triangle). We can see

that DOSX+DOSL is almost exactly the same as DOSXL. Since calculating DOSX and

DOSL separately is much faster than calculating DOSXL due to the cubic scaling of the

matrix diagonalization, our result has an important implication for the future MOSFET

simulations: there is no need to calculate the wavefunctions using all valley basis functions

together, instead the contributions from different valleys can be calculated separately.

We next investigate the couplings between three X valleys: X001, X010, X100. These three

valleys are nonequivalent due to the device geometry (Fig.2). In Fig.6, we show the DOS

of the individual X-valleys, their sum, and the total DOS calculated with three X-valley

basis sets together. We find that the direct sum of partial DOSX100
, DOSX010

and DOSX001

is almost indistinguishable from the total density of state DOSX100,010,001
calculated with all

the basis sets. This demonstrates that even the couplings among the three X-valleys are

small. Thus for practical purposes, one can calculate the system eigenstates from these three

X-valleys separately. Note, the DOSX001
has the lowest energy tail, followed by DOSX100

,

then by DOSX010
. This is because the X001 valley has a large effective mass (parallel effective

mass of the X-valley) in the vertical z direction (Fig.2(b)). Since the strongest confinement

effects happen in the z direction, the corresponding large effective mass produces a small

quantum confinement energy, thus it has the lowest eigen states, and lowest DOS tail. The

X100 has a small effective mass (transverse effective mass of the X-valley) in the z direction,

but it has a large effective mass in the x direction (Fig.2(b)). Since the x direction also has

a quantum confinement effect, it leads to intermediate eigen energies and DOS. In contrast,

X010 has a small effective mass in both z and x directions, thus it has the largest quantum

confinement energy and the highest DOS.
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Above, we have analyzed the intervalley couplings by examining the eigenstate wavefunc-

tions and density of states. The intervalley couplings can also be determined directly from

the coupling matrix elements < φk
′|Ĥ|φk >, where k′ and k are from different valleys, and

φk is the bulk Bloch function at the k point. The values of these matrix elements are shown

in Table.I for different Vds and Vg situations. We have the following observations: (i) In

general, the coupling matrix elements are all very small. The largest is about 3 meV. Thus,

for all practical purposes for device simulation, we can ignore the intervalley coupling, and

calculate the device eigenstates from different valleys separately. This is the main conclusion

of this paper. (ii) When k′ − k has a nonzero component in the [010] direction (y direction

in Fig.2), the coupling constant is zero. This is because in the y direction, the device is

periodic with a primary cell unit. Thus any k′ − k component in this direction which is

not a multiple of the reciprocal lattice of the primary cell will lead to a zero integral in

the matrix element. This rule makes all the possible L-X couplings to be zero (including

the other two L points not shown in Table.I). This might seem contradictory to the results

shown in Fig.3(b). There, although the L-X coupling is small, it is nevertheless not exactly

zero. However, PL is much smaller than PΓ, despite the fact that the band energy of the

X point is much closer to the L point than to the Γ point. The small remaining PL in

Fig.3(b) comes from the k-points slightly off the exact X and L points, which can have zero

[010] k′ − k components, thus allowing coupling between them. Note that, in this paper,

we have used a uniform continuous doping model. If the atomistic random dopant positions

are considered, the coupling will not be zero between any two valleys. Nevertheless, such

random potential induced coupling constant will also be small, on the order of a few meV,

as demonstrated by the alloy study in Ref.16.

IV. CONCLUSION

We have studied the invervalley coupling in a nanometer sized MOSFET. We find that

the intervalley coupling is small in general, on the order of a few meV. As a result, the

eigenstates derived from different valleys can be calculated separately without considering

intervalley couplings. In terms of coupling amplitudes, the X-Γ coupling is larger than the

X-L coupling. At the exact valley center, the X-L coupling is zero. The X-X coupling has

the largest amplitude of about 3 meV.
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TABLE I: Magnitudes (in meV) of single-k-point coupling matrix element < φk
′ |Ĥ |φk > calculated

using LCBB method for different Vds and Vg conditions. ∆k represents k
′-k folded into the First

Brillouin Zone.

k
′ −→ k ∆k Vds = 0.0(V ) Vds = 0.0(V ) Vds = 1.0(V ) Vds = 2.0(V )

Vg = 2.4(V ) Vg = 2.8(V ) Vg = 2.4(V ) Vg = 2.4(V )

X100 − L111 (π
a
,−π

a
,−π

a
) 0 0 0 0

X010 − L111 (−π
a
, π

a
,−π

a
) 0 0 0 0

X001 − L111 (−π
a
,−π

a
, π

a
) 0 0 0 0

X100 − Γ (2π
a

, 0, 0) 0.0084 0.0075 0.697 1.42

X010 − Γ (0, 2π
a

, 0) 0 0 0 0

X001 − Γ (0, 0, 2π
a

) 0.120 0.336 0.087 0.064

X100 − X010 (0, 0, 2π
a

) 2.66 2.23 2.62 2.59

X100 − X001 (0, 2π
a

, 0) 0 0 0 0

X010 − X001 (2π
a

, 0, 0) 0.016 0.014 0.76 1.55

L111 − L1̄11 (2π
a

, 0, 0) 0.0048 0.0042 0.007 0.010

L111 − L11̄1 (0, 2π
a

, 0) 0 0 0 0

L111 − L111̄ (0, 0, 2π
a

) 1.78 1.79 1.77 1.77

L1̄11 − L11̄1 (0, 0, 2π
a

) 0.57 0.36 0.55 0.54

L1̄11 − L111̄ (0, 2π
a

, 0) 0 0 0 0

L11̄1 − L111̄ (2π
a

, 0, 0) 0.0047 0.0043 0.35 0.71
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FIG. 1: The Si bulk band structure calculated using our EPM.The top of valence band is at zero

energy.

FIG. 2: (color online) (a) Schematic MOSFET structure along with potential contour lines with

source-drain voltages. The actual calculation domain is contained in the dashed line box. (b)

Schematic k-point distribution chosen by actual calculation in k-space. For clarity, only two L-

points (11-1),(111) out of four are illustrated.
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FIG. 3: Probability distribution PΓ (a) and PL (b) versus eigenenergies with applied voltages

Vds = 2.0V and Vg = 2.4V . Each symbol represents one eigenstate,with its eigen energy shown in

the horizontal axis. For energies less than -5.75eV, the resulting calculated PL is zero (or almost

zero), thus not shown in our logarithmic coordinate.

FIG. 4: (color online) Density of states of L-valley (including only L(111),L(11 − 1)) with source-

drain voltages Vds = 0V (black), 1V (red), 2V (green) respectively States lower than EL
F (indicated

by the vertical arrow) will be occupied from the drain side.
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FIG. 5: (color online) Density of states calculated by selecting different valley basis sets with

applied voltages Vds = 2.0V and V g = 2.4V .

FIG. 6: (color online) Total DOSX100,010,001
(solid triangle) of X-valley and partial DOSX100

,

DOSX010
, DOSX001

in [100](cyan), [010](red), [001](blue) X-valleys, respectively, with applied volt-

ages Vds = 0V and Vg = 2.4V . The green line represents the direct sum of partial DOSX100
,

DOSX010
and DOSX001

. For Vds > 0, we find the same agreement between X100+X010+X001 and

X100,010,001.
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